Effective Hamiltonians for transition metal compounds

Writing down the simplest possible effective Hamiltonian for a chemically and structurally complex material is a great challenge. This is particularly true of transition metal compounds because of the presence of multiple d-orbitals. Often crystal field effects split these orbitals and so one needs only consider a subset. Nevertheless, justify a selection and defining the relevant inter and intra-orbital interactions is difficult. Starting from the atomic limit one can consider the following Hamiltonian for a single atom [see this post about Hund's rule]
same orbital, and with opposite spins in the same orbital, maximizing S and then T.

This seems a lot simpler and transparent than forms I have seen with creation and annihilation operators. 
How does one determine U and J? Hotta has a helpful review where he discusses these in terms of Racah (Slater) parameters. He also discusses the overlap matrix elements associated with orbitals on neighbouring atoms. These are needed to determine a tight-binding band structure.

One should also be able to extract some of these parameters from related transition metal complexes studied by inorganic chemists.

Comments

Popular posts from this blog

What is Herzberg-Teller coupling?

Is it an Unidentified Superconducting Object (USO)?

What should be the order of authors on a conference poster or talk?